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Abstract—Exact solutions are obtained for temperature and moisture distribution as well as the pqsition

of the moving evaporation front in a porous half-space. Tvio mathematical models, corresponding to

the drying of the moist body in the period of decreasing rate and the intensive drying in the presence of

molar transfer in the region of evaporation are considered. It is shown that the problem solved in [1] is a

very special case of the solution presented here. The influence of some of the nondimensional parameters
is illustrated by examples.

NOMENCLATURE

A, Ay, A,, constants of integration;

ap, molar diffusivity;

gis thermal diffusivity;

i moisture diffusivity;

B, B;;, B,, constants of integration;

Cois specific heat capacity;

Comis specific mass capacity;

Fo,Fo,, Fourier numbers, a,1/1* and ag,1/x?
respectively;

ki, kp, thermal and molar conductivity
respectively;

Ko;, Kossovitch number,
r(cmi/cqi) (90 - es)/(ts - tO);

A the characteristic length;

Lu;, Luy, Luikov numbers, a,,;/a, and ay/a,,
respectively;

p(x, 1), pressure;

P(X, Fo), nondimensional pressure, (p(x, 1) - p,)/p,;

Pn;, Posnov number, §;(t;— t0)/(6p — 6y);

r, latent heat of vaporisation of liquid per
unit time;

s(1), position of evaporation front;

S, nondimensional position of evaporation
front, s/1;

t;(x, 1), temperature;

T(X, Fo), nondimensional temperature,
(t:x, 7) — to)/(t5~ to);

X, length coordinate;

X, nondimensional length, x/I;

Zi(X, Fo), potentials defined by equation (2.15);
erf( ), error function;
erfc( ), complimentary error function.

Greek symbols

o, thermal gradient coefficient;
&, phase change criterion;
0:(x,7),  mass-transfer potential;

©,(X, Fo), nondimensional mass-transfer potential,
(00 —6i(x, T))/(Go —85);

Ay nondimensional constant, S/(2 \/ Fo);
Vo, pmaq2(1~82)/(kpps);
Vi, PmAg2 (r/k1) (81 —&2)/(t,—10);
Prmis density of moisture per unit volume;
Vi, Vi constants defined by equations (2.16)
and (3.27);
ou(A), defined by equation (2.30);
T, time.
Subscripts
i, f, lor2;
i=1, first region, 0 < x < s;
1/(4/%) < Fo, < o0
i=2, second region, s < x < o0}
0 < Fo, < 1/{42%);
s, at surface x = 0;
v, vaporising state;
21,12, ratio of properties of region 2 to 1 and

797

1 to 2 respectively.

1. INTRODUCTION

AS FAR as 1929 Sherwood pointed out that in the
process of drying in the period of decreasing rate a
gradual deepening of the evaporation region inside
body is observed [2]. Still at that time, on the basis of
numerous experiments [3-7] Luikov found out the
mechanism of this phenomenon.

He showed that evaporation takes place not only in
the moving evaporation front, but all over the boundary
region. Thisis due to the fact that the capillary moisture
is removed comparatively easy on the evaporation
surface which is an analogue of the freezing boundary
in Stephen’s problem, while the adsorption moisture,
which is strongly attached, is removed by gradual
evaporation in the whole region of evaporation. Some
more detailed information the reader can find in the
well known monograph [2].
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The mathematical formulation of the problem of
determining the moisture and temperature fields in the
presence of a deepening region of evaporation is given
in [2]. But up to now exact analytical solutions of the
problem were not announced. In connection with this
the approximate solution obtained by heat balance
integral technique in [1] is of considerable interest.

Here are derived the exact solutions of two more
complicated models. More convenient charts for
temperature and moisture are proposed and influence
of some nondimensional parameters is illustrated.

Evidently there is contradiction between the simpli-
fying assumptions accepted in [1] and [8]. Gupta
neglected the second term in the r.hus. of his equation
(2.4) while Bruin—the first term. But as we have shown
in[9], quite a complex mechanism is hidden behind the
exterior simplicity of the process of drying which should
be studied only on the basis of Luikov’s system without
any simplifications of the latter.

2. DRYING IN THE PERIOD OF DECREASING RATE

Let us consider the flow of heat and moisture through
a porous half-space (x > 0) during drying. It has been
pointed out [3-7] that the evaporation front moves
forward, deepening in the body. Let its position at time
7 be given by x = s(1). It divides the porous body into
two regions, in each one the process of drying being
described by Luikov’s system. The thermophysical
parameters change in a jumplike manner when crossing
the evaporation front, which reduces the problem to
the solution of the following equations [2]:

8ti(x, 7) 5*t(x, 1) Cmi 00:(x, T)
; o 2.1
or YT Tar ey Ot 1)
86i(x, 1) 2%0,(x, 1) Ot(x, 1)
g —— :0; 2.2

where the subscript i =1 corresponds to the evapor-
ation region 0 < x < s(r) and i = 2 to s(1) < x < o0.

The initial distribution of temperature and moisture
are uniform

12(x,0) = ty(c0,7) = 19, 03(x,0) = 05(cc, 1) = 0. (2.3)

Itis also assumed that on the surface of the half-space
the temperature and moisture are constant but differing
from the initial ones

[1(0, S) = I, 01(0: S) = 05

These conditions do not correspond to the process of
drying, but they allow to obtain an exact analytical
solution.

On the evaporation front there exists an equality
between temperatures and mass-transfer potentials

405, 1) = 65, 7) = t,(r), 04(5,7) = Bas,0) = 6,. (2.5)

The jumplike change of the phase change number
from ¢, to at & takes place at a certain humidity 6,,
which being available, leads to the deepening of the
evaporation surface [10]. In contrast to Stephan’s
problem of freezing a moist body, the evaporation

(2.4)

surface temperature r,(t) appears to be a variable. A
characteristic quantity for the evaporation surface turns
out to be a mass content below which the mass supply
is lower than the removal of vapours from the evapor-
ation surface and reasons in deepening of the latter [ 10].

An interface condition concerns the heat flux re-
quired to evaporate the moisture at this evaporation
front. As it moves forward at a distance ds, a quantity
of heat per unit area is necessary to evaporate the
moisture at this surface, which yields

ﬁt i(s, T) ds
Z ‘—1 o V(Bx—gz)l’mza~

(2.6)

The moisture balance at the evaporation front gives

2 . 06.(s, 7) otls, 7]
Z (—1) ,m{ +O— }—0. 2.7

The set of equations (2.1)—(2.2) can be given the non-
dimensional form as

2
67",(6)1(;0F0) —a, i) Tla(;\;;FO)“SiKOi 6@,@(;(;F0) 28)
00,(X, Fo)
oFo
= a;, Ly {aze)i(x’ FO)— n; PPT(X. FO)} (2.9)
s oXx? ) G

The initial and boundary conditions are

T3(X,0) = Ty(c0, Fo) = 0,
©,(X,0) = ® (o, Fo) = (210
T,(0,Fo) =1, ©,(0,Fo)=1. 2.1
The interface conditions are
T,(S, Fo) = T5(S, Fo) = T,(Fo), 2.12)
O(S, Fo) = O,(S,Fo) =0, ’
2 0TS, Fo) dS(Fo)
ik, 2.13
P L)
2 . 008, Fo) 0T;(S, Fo)
g L e 2 pp, 27 TN 0, (2,14
i;( 1)Ya;, L { X n; Fe (2.19)

In [11] it is shown that the systems (2.8)—(2.9) can be
transformed into the decoupled equations
5Z},(X FO) (3ZZ]~,~(X, FO)
i dFo ox*

(2.15)

i2
where

1 1 .
vi= 5{1+£,~Ko,~Pni+a—+(~1)’

/[(1 KoiP 1)2 4]} 216
X +¢£;Ko; n,~+L—u _H .2 )

The pure heat-conduction type differential equations,
like (2.15) have the following solution

Zi{X,Fo) = A+ B erf( 2.17)

o)
2\/( 12F )
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The potentials T}(X, Fo)and ©,(X, Fo)are given from
the linear combinations of Z (X, Fo) [11]:

T{X,Fo) = — Z( (1=vi.;)
zZi— 1:;—
x| Az+Byerf —’L) (2.18)
B Vi@ Fo), '
O,X, Fo)= z (1)

1:,11

> ¢
{A +B;; erf(Z\/( ~Fo) )] (2.19)

where A; and Bj; are constants which are to be chosen
to satisfy the initial and boundary conditions. For the
case discussed here thisis possible and consequently the
problem has exact analytical solution.

A system of two algebraic equations is obtained from
the initial conditions (2.10) and its solution yields

By=—dp, j=12 (2.20)

In an analogous way from the boundary conditions
@2.11): .
vi—1

Ap=147

. J=12 (221)

My

Substituting the solutions (2.18) and (2.19) in the
conditions (2.12), using (2.20) and (2.21) and having in
mind that (v} —1)(v}_;;—1) = —¢& Ko, Pn; one obtains
the system from which it follows that

T, 1+(@,~1)(vi —1)/Pn,

By = 222
i e (5 A/ 222
and
T, +® (V-Z': - 1)/Pn2
Ay =L 20 T2 223
7 erfc(v;, 4) (229
where
i=s/2./Fo) and T,= const.

Substituting (2.20)—(2.23) in the solutions {2.18)-
(2.19) after some mathematical operations one has the
following final results:

2

Ti(Fo,) = 1+~*—~ > (=Y

‘“\'11 i=1

x[(1 —3’3—1‘1)(7;‘1)’*31 Ko,(@,-1)]

v /
x erf (2—'\/—2"1:;70—;*) {erf (vﬂ /L/\/ au) (2.24)

©,(Fo,)=14+——-5 3 (—1¥

21—\'11; 1

X [Pny(T, 1)+(v,; ©,-1)]

le
\W} / erf (v A/i/ayz)  (2.25)
> 1/(44%) and

z -1y

12j
[(1 —V3 -, z)T +82K02®l,]

xerfc(z JFo ) /{erfc(vjz/i)

x erf
where Fo,

Ty(Fo,) =

2.26)

OuF0) = s zl( 1Y[Py Ty+(vh— 1)0,]
£
xerfc(z\;F ); erfc(v;, 4) 2.27)

where Fo, < 1/(44%).
With the help of these solutions from the boundary
conditions (2.13) and (2.14) one gets:

[(yfﬁzx)@ii+k21(})12]x;
+ [(a20)e Koy @y +h18:K0,905,10,
= (\/au)[fﬂn'*'ﬁl K"l‘ﬁ’21:|_(\/7‘3)"z/1 2.28)

[(Var) Ly Pry{yy = @21)+ Lug Pry(@r — 922)1 7,
+ [(Var2) Luy (@31 + &y Koy Py @)
+ Luy{@32+8, Koy Pry2,)10,
= (Vau L [Pry(@1y — @21) + @31 +8 Koy Pry @]
(2.29)
where

l
®i = Z (— ])’v,,

.._\Jh =
x {x =)=t )]

XCXP[—(VJEA/(\/GQ))E]/[ 2—iferd(v 111/‘\/a12)
zfl)erfc(»fi;)} (2.30)

wherel=1,2,3;i=12.

When ©, are known from equations {2.28)-(2.29),
using a computer, one can easily obtain T, and 4, which
leads to obtaining the exact analytical solutions (2.24)-
(2.27) to analyze the process of drying with a deepening
region of evaporation.

As it is seen from the solution presented, on the
surface of the evaporation front not only mass-transfer
potential but also temperature are constant. Perhaps
this is a result from the boundary conditions (2.11).

In the case that the moisture in region i =1 is in
vapour form only, that is ¢;, =1, Ko, =0, Pn; =0,
Lu; = o0, from (2.16) and (2.29) follows that v3; = 1,
vi, =0, ®, = 1. Then the solutions (2.24)—(2.25) take

the form
08 s

O,(Fo,)=1 (231)

and equation (2.28) yields the following transcendental
equation

TFo,) = 1+(T,~

kay \/5121

Vu

(T,— Dexp[ —(4/\/ay2)*]/erf( "-/\/ alz)+

2
X Z (“l}j"jz[:(l—Vg—j.z)n+32K02]
Jj=1

xexp[ —(viz A Jferfe(vi, )+ f(ma v A = 0. (232)

This particular case is obtained when the vapour is
not subject to considerable resistance in its movement
in the region of evaporation, and therefore at the front
there is constant pressure. It is well known that
at a fixed pressure for every liquid there exists a
temperature at which it evaporates completely. That is
why the temperature T, turns out to be a known
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and the transcendental equation (2.32) fully determines
4. The exact solution of Gupta’s case [1] is easily
obtained as a special case from equations {2.31}, (2.26),
(2.27) and (2.32) when one has: a, =1, Pn, =0,
vi, = land v3; = I/Lu,.

3. DRYING WITH MOLAR TRANSFER

In [1] is discussed the case when in the boundary
region0 < x < s(7) the moisture is in vapour form only.
In this region because of the vigorous vaporization
takes rise a stable pressure gradient which calls forth a
molar transfer of the type of filtration through a porous
wall.

A considerably more precise mathematical model of
this phenomenon is given by the equations

1%, T) 1%, 1)
éT =y @xz (31)
61(x,7) = 6, 3.2

éplx, 1) *p(x, 1)
> =a, e 3.3)
and
BtZ(xs T) 62t2(x) t} Cm2 agl(xs T)
- 2 20T 34
T I P
éf(x, 7} 026,(x, 1) . On(x,7)

. = fp2 e + lpy303 e (3.5)

where the subscript I corresponds to 0 < x < s{r) and
2tos{t) < x < .

The initial (z = 0) and boundary (x = 0) conditions
are stated as follows:

£3(x,0) = 300, 1) = 1p;  03(x,0) = Ox(c0, 7) = 0, (3.6)
40,7y =1t p0,1)=p (3.7)

At the moving evaporation front the conditions are:
4s, 1) = tols, vy = fpls, 1] (3.8)

Bas, 1) = 6, (3.9

where f[p(s, 1)] denotes the relation between boiling
temperature and pressure.

Heat and moisture balance at the evaporation front
yields:

z , Ol 1) ds
— 1)k, - r(l — - 3.10
S R s T (310
Op(s, ds
D (3.11)

d_'r" .
The equations (3.1}-(3.11) can be represented in the
nondimensional form as below

éTi(X, Fo) *Ti(X, Fo)
¢ —a 312
oFo @, - X (.12)
O,(X, Fo)= 1 (3.13)
eP(X, Fo) & P(X, Fo)
- 3.14
aFo f X (3.14)
TAX.Fo) | PTiX.Fo) | 00X, Fo) o
ax2 T axe RO e ‘
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0O:(X,Fo) _ |, (0sX.Fo)_, 2*TyX,Fo)
Fo My T axz T axe
(’3,26)
THX,0) = Ty{oc, Fo)y =0, ©(X,0) = O,(cx, Fo) =
317;
T,0, Fo) =1, P(0, Fo) = (3.18)
T,(S. Fo) = Ty(S, Fo) = F[P(S, Fo)]  (3.19)
©,(S. Fo) = 1 (3.20)
2 oT(S.Fo)  dS
ke, 2T €0 s
«Z::( Yy, o "dFo 3.21)
GP(S.Fo)  dS .
—_—— = — ]
6X ?dFo ¢

where Lu = Lu,, Pn = Pn,, Ko = Ko, and ¢ = ¢,.
The solutions of (3.12)-(3.16), similarly to (2.18)—
(2.19) can be written as:

'I}(X,Fo):A-i—Berf( (3.23)

X )
2 N/(auFo);
/ X
P(X,Fo) = A,+ B,erf (imi) (3.24)

'"V%—j)
[A +B, erf( éaﬂ (3.25)
2 X
A+ Berf
[ * e( Fﬂ

(3.26)

2
TxX, Fo) = E

O,(X, Fo) =

where

i
v = {1 +£KOPﬂ+z—'+( 134

{ 2 4
x\/[(l-{-chPn—{-%») —»L—}},jzl,z (3.27)
i i

and 4, B, 4,, B,, A;, B; are to be chosen to satisfy the
initial and boundary conditions {3.17)-(3.22).
From the initial conditions (3.17) one obtains:

B= — 4, (3.28)

The boundary conditions (3.18) and (3.22) yield:

A=1 A,=0 (3.29)
B, = iv,/(nLufexp(— A*/Lu,) {3.30)
where 4 = S/(2/Fo).
From (3.19) and (3.20) it follows
A+ Berf(}/ falz}
1
S S (= 1)(l—v3_ A erfctn2) = T, (31)
VZ"'Vlj 1
}: (— 1Y A4 erfe(v; i) = (vi—vi)/Pn. (3.32)

=1
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Then B and A; may be obtained in term of T,:
B=(T,— 1)/erf(i/\/a12)

2
A;= (T + —Pn—>/erfc(v A).

After substituting (3.29), (3.30), (3.33) and (3.34) in the
solutions (3.23)—(3.26) the latter take the form

(3.33)

(3.34)

1
Ty(Fo,} = 1+(Tu—1)erf[7]/erf(i/\/au)
2 \/(allFox)
(3.35)
1
P(Fox) = va(nLu,,)* erf [m}/exp(—iz/mﬁ,)
P (3.36)
where Fo, > 1/(412) and
2
T,(Fo,) = — = 2 (=1Y[(1=v3_)T,+eKo]
1 j=1
X erfc(zx/ )/erfc (v;4) (3.37)
2
®,(Fo,) Z —1Y[PnT,+vi-1]
X erfc(2 \/F >/erfc (v;A) (3.38)
where Fo, < 1/(4A?).

The boundary condition (3.21) yields the following
transcendental equation for determining A:

(\/an)(T—l)exp[ l/\/alz /erf(l/\/alz + v, Ant
kz1

2
—V1,1

—1yv;[eKo+ T,(1 —v}_))]

x exp[ — (v;A)]ferfe(v;4) = 0. (3.39)

It is obvious that when calculating 1 one has to take
into account the dependence of the nondimensional
temperature upon the nondimensional pressure

T, = F[P(S, Fo)]
= F[Avy(nLuy,)* erf (1/\/Lu,)/exp(— A%/Lu,)] (3.40)

In the case that the porous structure does not resist
the vapour flow one has a, =0 and k, = co; that is
v, =0, Lu, = oo and hence the solutions (3.35)-(3.39)
turn out to be identical to (2.31), (2.26), (2.27) and
2.32).

4. RESULTS FOR SOME PARTICULAR CASES
AND DISCUSSIONS

The solutions (3.35)—(3.40) were coded in ALGOL. In
this section we discuss the results for the case when the
porous structure does not hinder the vapour flow,
which is the reason for T, to be given as a constant.

In Table 1 are presented numerical results for the
nondimensional temperature and moisture potentials
for the same values of Lu, ¢, Ko, v,, a,5, k,; and T, as
those in [1]. The identity of data is easily established
through the following relations between our quantities
(T,, v,) and Gupta’s ones (v, p):

k
7},:1/(1+ﬁ>, v,=vk21/<1+i>.
P kay

Table 1. Nondimensional temperature and
mass-transfer potentials for ¢ =05, Pn =1,
Lu=05 Ko=12 v,=5 a5,=1, kyy =1,

T, =05
Fo, T ©
03 0-068 0016
0-4 0-096 0-055
05 0122 0-101
06 0-146 0-147
0-8 0-187 0234
1 0221 0310
12 0250 0-376
16 0294 0-483
2 0328 0565
3 0-386 0-708
4 0423 0-802
S 0-449 0-869
6 0-469 0920
8 0-498 0994
8:215 0-500 1-000
10 0-546
12 0-585
16 0-640
20 0678
30 0-736
40 0772
50 0796
60 0814
80 0838
100 0-855

In contrast to [1] the value of Posnov number is
assumed to be 1 instead of 0 so that account is taken
for the influence of the temperature gradient on the
moisture movement.

To evaluate the influence of the nondimensional
parameters Pn, Lu, ¢, Ko, and v,, the latter were varied
as follows:

Pn=0, 025, 05,
Lu =005, 01, 02,

075, 1-0 and 1'5;
03, 04 and05;

e=0, 01, 03, 05, 07 and09;
Ko=0, 04, 08, 12, 16and?2;
vw=1, 5 10, 25and 50.

The results of the numerical calculations were shown
in Figs. 1-4, where one of our figures contains four
figures from [1]. If Fo, <02 it might happen that
© < 0; this is not shown on the figures, because the
negative values are below 0-02.

The diagrams shown can be interpreted in two
different manners:

(a) The figures represent the time changes of tem-
perature and moisture potentials for a fixed space
position. At the beginning of the process the tempera-
ture gradually rises while from a fixed moment on
moisture rapidly evaporates. When the evaporation
front reaches the point under consideration the tem-
perature becomes equal to T, and all the moisture
evaporates. Later temperature continues to rise as time
goes on, approaching the surface one.

(b) For a fixed moment of time the figures show
temperature and moisture distributions in a halfspace.
The surface X =0 corresponds to Fo, — co which is
the reason for the right hand side with temperature
above T, to give the temperature distribution in the
surface layer where moisture is in vapour form only.
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o4

o2

1
L]
Fo,

1
100

1000

F1G. 1. Effect of variability of Pn on nondimensional temperature and mass-transfer

potentials for = 0:5, Lu =05, Ko =12, v,=5,a1, =1k, =1, T, =05.

o2

1
100

1000

F1G. 2. Effect of variability of Lu on nondimensional temperature and mass-transfer

potentials for ¢ = 0-5, Pn=1,Ko=12,v,=5,a,, =1, k;; =1, T, = 0-5.

044

o2

10
Fo

X

!
100

1000

Fi1G. 3. Effect of variability of Ko on nondimensional temperature and mass-transfer

potentials for e = 05, Lu = 05, Pn =1.v, = 5,ay, = 1, ky; =1, T, = 0:5.
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1

10
Fo

00 000

x

FiG. 4. Effect of variability of ¢ on nondimensional temperature and mass-transfer
potentials for Lu =05, Pn=1,Ko= 12, v,=5ay; = Lk, =1, T, =03,

1-0F
1~8
o8+
T
- 06— V”| 5785, 50
S
04 Pnst
Lu=05
Ko=12
€205
ozt
T
y=l\ 2.5\ \J0 0
o L A\ L i
O i 10 100 000
Fo,

F16. 5. Effect of variability of ¢ on nondimensional temperature and mass-transfer
potentials for e = 05, Lu =05, Pn=1,Ko= 12, a;3 = L, ky; =1, T, = 05,

Figure 1 represents the influence of Posnov’'s number.  The curves in Fig. 5 confirm all conclusions of Gupta

It can be seen that the position of the evaporation front
does not depend on Pn. Therefore the Gupta’s simpli-
fying assumption [1] that Pr =0 does not reason in
considerable inaccuracies.

Figure 2 illustrates the negligible influence of
Luikov's number both on the position of the evapo-
ration front and on the temperature distribution. The
drying occurs in a region which considerably narrows
with the decreasing of Lu.

From Fig. 3 it is seen that in comparison to Pn and
Lu the Kossovitch number influences strongly the
process. The temperature at a fixed position decreases
as Ko increases.

Fully analogous is the influence of the phase change
criterion (Fig. 4) but nevertheless the influence of £ and
Kois considerably weaker than the one shown in Fig. 5
influence of the nondimensional heat of evaporation v,.

[1]and demonstrate convincingly the decisive influence
of v, in comparison to that of Pn, Lu, Ko and &.

It may be concluded that v, characterizes the effect of
the deepening of the evaporation front on unsteady
state heat and mass transfer in a porous system.
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SOLUTIONS EXACTES DE DISTRIBUTION DE TEMPERATURE ET D’HUMIDITE DANS
UN DEMI-ESPACE POREUX AVEC FRONT D'EVAPORATION EN MOUVEMENT

Résumé—Des solutions exactes sont obtenues pour les distributions de température et d’humidité ainsi
que pour la position du front d’évaporation en mouvement dans un demi-espace poreux.

Deux modéles mathématiques sont considérés, correspondant au séchage d’un corps humide dans la
période de diminution de la vitesse d’évaporation et au séchage intensif en présence du transfert de masse
dans la région d’évaporation. Il est montré que le probléme résolu dans [1] est un cas trés spécial de la
solution présentée ici. L'influence de quelques uns des paramétres adimensionnels est illustrée par

des exemples.

EXAKTE LOSUNG FUR DIE TEMPERATUR- UND FEUCHTIGKEITSVERTEILUNG
IM POROSEN HALBRAUM MIT WANDERNDER VERDAMPFUNGSFRONT

Zusammenfassung — Fiir einen pordsen Halbraum wurden exakte Losungen sowohl fiir die Temperatur-
und Feuchtigkeitsverteilung als auch fiir den Verlauf der fortschreitenden Verdampfungsfront ermittelt.
Dem Trocknen des feuchten K8rpers in der Periode abnehmender Geschwindigkeit und dem intensiven
Trocknen durch molekulare Ubertragung im Verdampfungsbereich entsprechend wurden zwei mathe-

matische Modelle betrachtet.

Es wird gezeigt, daB das in [1] geloste Problem ein sehr spezieller Fall der hier vorgelegten Losung
ist. Der EinfluB einiger der dimensionslosen Parameter wird durch Beispiele erldutert.

TOYHOE PEWIEHME 3AJAYH O PACIIPEIAEJEHMW TEMIIEPATYPBI U BIAXKHOCTHU
B [MOPHUCTOM ITIOJIVIIPOCTPAHCTBE C JBMXYHIMUMCSA ®POHTOM UCIIAPEHUA

Amiotaumn — TTosyyeHb! TOMHBIE PACTIPEHETICHHS TEMIEPATYPBI H BAAXHOCTH, & TAKKE TIOTOKEHHE

IBHXYIIErocs ¢ppoHTa HCHAPEHHS B MOPHCTOM MOJIYNPOCTPaHCTBE. PaccMaTpHBaloTCs BE MaTeMa-

THYECKHE MOJEIH, COOTBETCTBYIOLIME CYIUKe BIAXHOIO TeNa NIPH yMEHbINAIOWEHCH CKOPOCTH CYIUKH

¥ MHTEHCHBHOM CyHIXE ¢ MONSPHBIM nepeHocom B obsactu wcnapenus. Ilokasano, 4To 3anava,

pemesnas B [1], npeacTaBnser YacTHLIA ciayyalt naHHOro pewichusa. BnusHue HekoTopsix Gespaimep-
HEIX MapaMeTpoB WIUTIOCTPUPYETC IPHMEPaMH.



