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Abstract-Exact solutions are obtained for temperature and moisture distribution as well as the position 
of the moving evaporation front in a porous half-space. Tvro mathematical models, corresponding to 
the drying of the moist body in the period of decreasing rate and the intensive drying in the presence of 
molar transfer in the region of evaporation are considered. It is shown that the problem solved in [l] is a 
very special case of the solution presented here. The influence of some of the nondimensional parameters 

is illustrated by examples. 

NOMENCLATURE 

A, Aji, A,, constants of integration; 

aP’ 

a@ 9 

ami, 

B9 Bji, Bp, 
cqi 9 

%i 3 

Fo, Fox, 

ki* kp, 

Koi, 

1, 
LUi, LUp, 

PC6 4, 
W, F4, 
Pnia 
r, 

s(d, 
S, 

ti(X3 5)* 
TW, Fo), 

x, 
X, 
Zji(X, Fo), 

molar diffusivity; 
thermal diffusivity; 

moisture diffusivity; 
constants of integration; 
specific heat capacity; 
specific mass capacity; 

Fourier numbers, aq2 2/l’ and aq2 T/X’ 

respectively; 
thermal and molar conductivity 
respectively; 
Kossovitch number, 

r(cmi/cqi) (43 - e.sY(ts - tO) ; 

the characteristic length; 
Luikov numbers, ami/aqi and ap/aq2 
respectively; 
pressure; 

nondimensional pressure, (p(x, 7) -p&p,; 
Posnov number, 6i(t, - to)/(& - 6,); 
latent heat of vaporisation of liquid per 
unit time; 
position of evaporation front; 

nondimensional position of evaporation 

front, s/l; 
temperature; 
nondimensional temperature, 

(ti(x,z)--to)/(ts-rO); 

length coordinate; 
nondimensional length, x/l; 

potentials defined by equation (2.15); 
^ 

erf( ), error function; 

erfc( ), complimentary error function. 

Greek symbols 

6i3 thermal gradient coefficient; 

&i, phase change criterion; 

&tx, 713 mass-transfer potential; 
Oi(X, Fo), nondimensional mass-transfer potential, 

(% - OiCx, T))/(eO - es) ; 

4 

VP, 

VI, 

Pmi~ 
vji, vj, 

nondimensional constant, S/(2 JFo); 

~m4,2 (1-4AkppJ; 

pm aq2 (r/h) h - ~2U(t, - td; 

density of moisture per unit volume; 

constants defined by equations (2.16) 
and (3.27); 

Vlitn)3 defined by equation (2.30); 
2. time. 

Subscripts 

i, j, 1 or2; 
i= 1, first region, 0 < x < s; 

1/(4i2) < Fo, < cg ; 
i = 2, second region, s < x < cc ; 

0 < Fo, < l/(41’); 

s, at surface x = 0; 

u, vaporising state; 
21, 12, ratio of properties of region 2 to 1 and 

1 to 2 respectively. 

1. INTRODUCTION 

AS FAR as 1929 Sherwood pointed out that in the 
process of drying in the period of decreasing rate a 
gradual deepening of the evaporation region inside 
body is observed [2]. Still at that time, on the basis of 
numerous experiments [3-73 Luikov found out the 
mechanism of this phenomenon. 

He showed that evaporation takes place not only in 

the moving evaporation front, but all over the boundary 
region. This is due to the fact that the capillary moisture 

is removed comparatively easy on the evaporation 
surface which is an analogue of the freezing boundary 
in Stephen’s problem, while the adsorption moisture, 
which is strongly attached, is removed by gradual 
evaporation in the whole region of evaporation. Some 
more detailed information the reader can find in the 
well known monograph [2]. 
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The mathematical formulation of the problem of 
determining the moisture and temperature fields in the 
presence of a deepening region of evaporation is given 
in [Z]. But up to now exact analytical solutions of the 

problem were not announced. In connection with this 
the approximate solution obtained by heat balance 

integral technique in [1] is of considerable interest. 
Here are derived the exact solutions of two more 

complicated models. More convenient charts for 
temperature and moisture are proposed and influence 
of some nondimensional parameters is illustrated. 

Evidently there is contradiction between the simpli- 

fying assumptions accepted in [1] and [8]. Gupta 
neglected the second term in the r.h.s. of his equation 

(2.4) while Bruin-the first term. But as we have shown 

in [9], quite a complex mechanism is hidden behind the 
exterior simplicity of the process of drying which should 
be studied only on the basis of Luikov’s system without 

any simplifications of the latter. 

2. DRYING IN THE PERIOD OF DECREASING RATE 

Let us consider the flow of heat and moisture through 

a porous half-space (x > 0) during drying. It has been 

pointed out [3-71 that the evaporation front moves 
forward, deepening in the body. Let its position at time 
r be given by x = s(7). It divides the porous body into 

two regions, in each one the process of drying being 
described by Luikov’s system. The thermophysical 
parameters change in a jumplike manner when crossing 
the evaporation front, which reduces the problem to 
the solution of the following equations [2] : 

&(x, 7) &(x, T) 
p= 

iir 
.,ip+Eir$pJ (2.1) 

3x2 

ix$(x, 7) d2O,(x, 7) 
p= amiF 

+ a ,6. a2ti(x, 7, 

?T 
mt I ____ (2.2) 

3x2 

where the subscript i = 1 corresponds to the evapor- 

ation region 0 < x < s(r) and i = 2 to s(7) < x < co. 

The initial distribution of temperature and moisture 
are uniform 

t,(x, 0) = tz(G 7) = to> Q2(x. 0) = 02(c;o, Z) = 0,. (2.3) 

It is also assumed that on the surface of the half-space 

the temperature and moisture are constant but differing 
from the initial ones 

t*(O, s) = r,, Bi(O, s) = 0,. (2.4) 

These conditions do not correspond to the process of 
drying, but they allow to obtain an exact analytical 
solution. 

On the evaporation front there exists an equality 
between temperatures and mass-transfer potentials 

ti(s, 7) = t,(s, 7) = t”(t), &(s, 7) = O,(s, 7) = 0”. (2.5) 

The jumplike change of the phase change number 
from a2 to at &I takes place at a certain humidity Q,, 
which being available, leads to the deepening of the 
evaporation surface [lo]. In contrast to Stephan’s 

surface temperature t”(7) appears to be a variable. A 
characteristic quantity for the evaporation surface turns 
out to be a mass content below which the mass supply 
is lower than the removal of vapours from the evapor- 

ation surface and reasons in deepening of the latter [lo]. 
An interface condition concerns the heat flux re- 

quired to evaporate the moisture at this evaporation 

front. As it moves forward at a distance ds, a quantity 

of heat per unit area is necessary to evaporate the 
moisture at this surface, which yields 

ds 
r(sr -&2)~2 -. 

dr 
(2.6) 

The moisture balance at the evaporation front gives 

= 0. (2.7) 

The set of equations (2.1)-(2.2) can be given the non- 
dimensional form as 

Zi(X, Fo) #IJx, Fo) 

dF0 
= ai 

E.KO, aoi(x, Fo) 

ax2 - ’ ’ c3Fo 
(2.8) 

a@i(X, Fo) 

c?Fo 

= ai LUi 
a20i(X, Fo) _ Pn, a*T(X F4 

ax2 ’ ax* 

The initial and boundary conditions are 

T,(X, 0) = T2(co, Fo) = 0, 

0*(X, 0) = @,(a~, Fo) = 0 

T,(O, Fo) = 1, @(O, Fo) = 1. 

The interface conditions are 

T,(S, PO) = T,(S, Fo) = T,(Fo), 

O1(S, Fo) = O,(S, Fo) = 0, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

a@i;;Fo)-p,i v = 0. (2.14) 

In [11] it is shown that the systems (2.8)-(2.9) can be 
transformed into the decoupled equations 

2 azji(x, Fo) 
“ji = ai 

azz,,(x, Fo) 

aFo ax2 
(2.15) 

v;=; l+s,KO,Pn,+Ll;+(-l)j 
1 

(2.16) 

The pure heat-conduction type differential equations, 
like (2.15) have the following solution 

Zji(X, Fo) = z4ji+BjieIf(2,/;l:~FoJ. (2.17) 
. -- problem of freezing a moist body, the evaporation 
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The potentials z(X, Fo) and 0,(X, Fo) are given from 
the linear combinations of Zji(X, Fo) [ 111: 

T(X, Fo) = - 

where Aji and Bji are constants which are to be chosen 

to satisfy the initial and boundary conditions. For the 
case discussed here this is possible and consequently the 
problem has exact analytical solution. 

A system of two algebraic equations is obtained from 

the initial conditions (2.10) and its solution yields 

Bj, = -Ajz, j= 1,2. (2.20) 

In an analogous way from the boundary conditions 
(2.11): 2 -I 

Aj,=f+k, j=l,2. (2.21) 
1 

Substituting the salutions (2.18) and (2.19) in the 
conditions (2.12), using (2.20) and (2.21) and having in 
mind that {vi-l)(v$_j,i-l) = -EiKoiPni One obtains 
the system from which it follows that 

B 

P 
_ T,--1$-m-wjZ,-l)/Pn1 

erftvjl AIJal*) 
(2.22) 

and 

where 

I = s/(2 ,/Fo) and T, = const. 

Substituting (2.20)-(2.23) in the solutions (2.18)- 
(2.19) after some mathematicat operations one has the 
following final results : 

x [Pq(&- I)+($ - l)f@,- l)] 

where Fox 3 l/(42’) and 

X [(1-V32-j,2)T,fE2K0200] 

(2.26) 

(2,27) 

where Fo, cl l/(41’). 
With the help of these solutions from the boundary 

conditions (2.13) and (2.14) one gets: 

1 
qPt,i = ~ i (-l)jVji 

+-Vl:; jzl 

x [l+fl-l~2)(fi-3)Y~_,~+(I-t)vj2,)] 

X ~~PC-(vjr3Ll(J~i2~)21/[(2-~)~rf(vj~~/~~~2~ 
+ (i - 1) NfC(Vjz A)] (2.30) 

where I = 1, 2, 3; i = 1, 2. 
When 0, are known from equations (2.28)~(2.293, 

using a computer, one can easily obtain TV and A, which 

leads ta obtaining the exact analytical solutions (2.24)- 
(2.27) to analyze the process of drying with a deepening 

region of evaporation. 

As it is seen from the solution presented, on the 
surface of the evaporation front not only mass-transfer 
potential but also tem~rature are constant. Perhaps 

this is a result from the boundary conditions (2.11). 
In the case that the moisture in region i = 1 is in 

vapour form only, that is zI = 1, Ko, = 0, Pn, = 0, 

Lrr, = co, from (2.16) and (2.29) foIlows that vi, = 1, 
v:, = 0, 0, = 1. Then the solutions (2.24)-(2.25) take 
the form 

O,(Fo,) = 1 (2-31) 

and equation (2.28) yields the following transcendental 
equation 

2 

x jTl (-f)ivj2C(1-V:-j,2)?t+E2K02] 

X exp[ - (Vi2 l~)2]/elkfYjz if +J(m, z)v,J = 0. (2.32) 

This particular case is obtained when the vapour is 
not subject to considerable resistance in its movement 
in the region of evaporation, and therefore at the front 

there is constant pressure. It is well known that 
at a fixed pressure for every liquid there exists a 
temperature at which it evaporates completely. That is 
why the temperature T, turns out to be a known 
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and the transcendental equation (2.32) fully determines 8@2(XI Fo) 
i. The exact solution of Gupta’s case [1] is easily 

~. .._ = 
.?Fa 

Lu 

I 

c’%,(X, Fo)_ pn a2r,(x, Fo) 

dX2 CX2 
obtained as a special case from equations (2.3 t ), (XX), 
(2.27) and (2.32) when ane has: aZI = 1, PrtZ = 0, 

(3.16) 

2 v22 = 1 and V& = I/Lr+. 
T,(X, 0) = 7”2(x, Fo) = 0, Q,(X, 0) = O,(Co, Fo) = 0 

(3.17) 

3. DRYING WITH MOLAR TRANSFER 

In [l] is discussed the case when in the boundary 
region 0 < x < s(r) the moisture is in vapour form only. 

T,(O, Fo) = 1, P(0, Fo) = 0 (3.18) 

?-,(S. Fo) = T,(S, Fo) = F[P(S, Fa)] (3.19) 

In this region because of the vigorous vaporization OJS, Fo) = 1 (3.20) 
takes rise a stable pressure gradient which calls forth a 

molar transfer of the type of filtration through a porous 
Wdf. 

5: (_ l)“#& aWy F”) - \,, ZE (3.21) 
i=l. ?X dFo 

A considerably more precise mathematical model of .GP(S, Fof dS 
this phenomenon is given by the equations 

p= ri - 
3X ‘dFo 

(3.22) 

&(x, r) 1;121t(x, -r> _~ 
7 = %i 8x2 (3.1) where LU = LuZ, Pn = Pn,, Ko = Ko, and E = Ed+ 

The solutions of (3.12)-(3.161, similarly to (2.18)- 
01(x, T) = o,, (3.2) (2.19) can be written as: 

(3.3) 

and 

T,(X,Fo)=A+Berf (2 dir2 FJ (3.23) 

&(x7 7) Z2&(s, 7) T,(X,Fof = -!l C (-ly‘(l-I?:-j) 
-= 

?t 
n,z &2 ~+6?,262----- 

&;571. f3,5) 
YL':-3& 

where the subscript I corresponds to 0 ,< x < s(z) and 

2 to s(t) d x < co. 

x [Rl+Sierfi~)l (3.25) 

The initial (7 = 0) and baundary (x = 0) conditions 
are stated as follows : 

02(X, Fo) ~~~~i-l)j[~j+q,erfj~~)] 

tz(x,O) = tz(co,z) = to; d&c,O) = ~~(co,T) = e, (3.6) (3.26) 

r#, r) = t,; pa z) = ps. (3.7) 
where 

At the moving evaporation front the conditions are: 

t,(s, rf = I&, t) = .f[pb, d] 

02(s, z) = o,,, 

where ,f‘[p(s, T)] denotes the relation between boiling 

temperature and pressure. and d, B, A,, BP, Aj, Bj are to be chosen to satisfy the 

Heat and moisture balance at the evaporation front initial and boundary conditions (3.17)-(3.22). 

vields : From the initial conditions (3.17) one obtains: 
i 

2’: (_ l)iki :tils, = r(l _E2)Pm2 ds (3.10) 
i=l 6x dz Bj= -Aj (3.28) 

f?p(.s, T) 
kp -_- = 

t?x 
(1-e )p 

2 m2 
!2 
dr . 

(3.11) 

The equations (3.1)-(3.11) can be represented in the 
nondimensional form as below 

The boundary conditions (3.18) and (3.22) yield : 

A=l, A,=0 (3.29) 

BP = ~~~~(~~~~~j~XP( - ;tZ/Ltl,) (3.301 

?: r, (X, Fo) t?‘T,(X, Fo) 
-~- = a,,2 - 

i?FO 2X” 

Q,(X, Fo) = 1 

(3.12) where ;Z = 5!{2 JF0). 
From (3.19) and (3.20) it follows 

(3.13) A-kBerf(l,/Ju,,) 

lY(X, Fo) 
= Lu, 

PP(X, Fo) 

2Fo 2X2 
(3.14) = .--.!__ i (-l)‘(l -v_j)AjerfC(VjA,)=: Kl (3.31) 

\I: - v: j= 1 

r7T2(X, Fo) (?2Tz(X, Fo) .-__-- = Lu _._.~... - 

PXZ ?XZ 
jil (- l)‘Ajerfc(vjR) = (vi -vf)/Pkz. (3.32) 
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Then B and Aj may be obtained in term of T, : 

B = CT, - Wf(WJ4 (3.33) 

Aj= (,+s)/etfC(Vjl). (3.34) 

After substituting (3.29), (3.30), (3.33) and (3.34) in the 
solutions (3.23)-(3.26) the latter take the form 

where Fo, 2 1/(4nZ) and 

1 2 
T,(Fo,) = v:_v: jgi (-lY[(l-vi-j)~+eKol 

erfc(vji) (3.37) 

O,(Fo,) = ~j~IwYIP~7,++11 

HfC(Vji) (3.38) 

where Fo, < 1/(412). 

The boundary condition (3.21) yields the following 

transcendental equation for determining 1: 

(Ja2i)(~- l)exp[-(1/Ja,2)21/erf(~/Ja,,)+v,lKf 

k 2 
+ * jzl (-l)'vj[EKo+K(l -vi-j)] 

X eXp[ -(vjn)2]/erfC(VjJe) = 0. (3.39) 

It is obvious that when calculating ,l one has to take 
into account the dependence of the nondimensional 
temperature upon the nondimensional pressure 

T, = F[P(S, Fo)] 

= F [lv,(nLu,,)* erf (i/,/Lu,,)/exp( - n2/&,)] (3.40) 

In the case that the porous structure does not resist 
the vapour flow one has ap = 0 and kp = co ; that is 
vp = 0, Lu, = cc and hence the solutions (3.35)-(3.39) 
turn out to be identical to (2.31), (2.26), (2.27) and 
(2.32). 

4. RESULTS FOR SOME PARTICULAR CASES 
AND DISCUSSIONS 

The solutions (3.35)-(3.40) were coded in ALGOL. In 
this section we discuss the results for the case when the 
porous structure does not hinder the vapour flow, 
which is the reason for T, to be given as a constant. 

In Table 1 are presented numerical results for the 
nondimensional temperature and moisture potentials 
for the same values of Lu, E, Ko, vt, a12, kzl and T, as 
those in [l]. The identity of data is easily established 
through the following relations between our quantities 
(T,, v,) and Gupta’s ones (v, p): 

T,= #I+%), v,=vk,,l(l+&). 

Table 1. Nondimensional temperature and 
mass-transfer potentials for E = 05, Pn = 1, 
Lu = 0.5. Ko = 1.2, V, = 5, a,1 = 1, kzl = 1, 

7;. = 0.5 

Fo, T 0 

0.3 0.068 0.016 
0.4 0.096 0.055 
0.5 0.122 0.101 
0.6 0.146 0.147 
0.8 0.187 0.234 
1 0.22 1 0.310 

1.2 0.250 0.376 
1.6 0.294 0.483 
2 0.328 0.565 
3 0,386 0,708 
4 0,423 0,802 
5 0,449 0,869 
6 0.469 0.920 
8 0.498 0.994 

8,215 0.500 1,000 
10 0.546 
12 0,585 
16 0,640 
20 0,678 
30 0.736 
40 0.772 
50 0.796 
60 0.814 
80 0,838 

100 0.855 

In contrast to [l] the value of Posnov number is 

assumed to be 1 instead of 0 so that account is taken 
for the influence of the temperature gradient on the 

moisture movement. 
To evaluate the influence of the nondimensional 

parameters Pn, Lu, E, Ko, and v,, the latter were varied 
as follows : 

Pn = 0, 0.25, 0.5, 0.75, 1.0 and 1.5; 
Lu = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5; 

E = 0, 0.1, 0.3, 0.5, 0.7 and 0.9; 
Ko=O, 0.4, 0.8, 1.2, 1.6 and 2; 

vt = 1, 5, 10, 25 and 50. 
The results of the numerical calculations were shown 

in Figs. 1-4. where one of our figures contains four 

figures from [l]. If Fo, < 0.2 it might happen that 
0 < 0; this is not shown on the figures, because the 
negative values are below 0.02. 

The diagrams shown can be interpreted in two 

different manners : 
(a) The figures represent the time changes of tem- 

perature and moisture potentials for a fixed space 
position. At the beginning of the process the tempera- 
ture gradually rises while from a fixed moment on 
moisture rapidly evaporates. When the evaporation 
front reaches the point under consideration the tem- 

perature becomes equal to T, and all the moisture 
evaporates. Later temperature continues to rise as time 
goes on, approaching the surface one. 

(b) For a fixed moment of time the figures show 
temperature and moisture distributions in a halfspace. 
The surface X = 0 corresponds to Fo, -+ co which is 
the reason for the right hand side with temperature 
above T, to give the temperature distribution in the 
surface layer where moisture is in vapour form only. 
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04 Ko= I 2 
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II,= 5 

02 
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01 I IO I00 IC 0 

FIG. 1. Effect of variability of Pn on nondimensional temperature and mass-transfer 
potentials for E = 0.5. Lu = 0.5, Ko = 1.2, \l, = 5, aI = 1, kZ1 = 1, TV = 0.5. 

k 
0 

0 

0 

6- 

P/7=1 
Ko=I.2 

E'O5 

I IO 100 I( 

Fox 
3 

FIG. 2. Effect of variability of Lu on nondimensional temperature and mass-transfer 
potentials for c = 0.5, Pn = 1, Ko = 1.2, v, = 5, aI2 = 1, kZ1 = 1, c = 0.5. 

Pn= I 
Lu=0.5 
cao.5 

FIG. 3. Effect of variability of Ko on nondimensional temperature and mass-transfer 
potentials for c: = 0.5, Lu = 0.5, Pn = 1. vI = 5, alz = 1, kZ, = 1. 7;. = 0.5. 
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Figure 1 represents the influence of Posnov’s number. 
It can be seen that the position of the evaporation front 
does not depend on Pn. Therefore the Gupta’s simpli- 
fying assumption [l] that Pn = 0 does not reason in 
considerable inaccuracies. 

Figure 2 illustrates the negligible influen~ of 
Luikov’s number both on the position of the evapo- 
ration front and on the temperature distribution. The 
drying occurs in a region which considerably narrows 
with the decreasing of Lu. 

From Fig. 3 it is seen that in comparison to Pn and 
Lu the Kossovitch number influences strongly the 
process. The temperature at a fixed position decreases 
as Ko increases. 

Fully analogous is the influence of the phase change 
criterion (Fig. 4) but nevertheless the influence of E and 
Ko is considerably weaker than the one shown in Fig. 5 
influence of the nondim~sional heat of evaporation vs. 
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FIG, 4. Effect of variability of E on nondimensional temperature and mass-transfer 
potentials for Lu = 0.5, Pn = 1, Ko = 1.2, v, = 5, al2 = 1, k21 = 1, T, = 0.5. 

_I 
JC IO 

FIG. 5. Effect of variability of E on nondimensional temperature and mass-transfer 
potentials for E = 0.5, Lu = 0.5, Pn = 1, Ko = 1.2, aI = 1, kll = 1, T, = 0.5. 

The curves in Fig. 5 confirm all conclusions of Gupta 

[l] and demonstrate convincingly the decisive influence 
of v, in comparison to that of Pn, Lu, Ko and E. 

It may be concluded that v, characterizes the effect of 

the deepening of the evaporation front on unsteady 
state heat and mass transfer in a porous system. 
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SOLUTIONS EXACTES DE DISTRIBUTION DE TEMPERATURE ET D’HUMIDITE DANS 
UN DEMI-ESPACE POREUX AVEC FRONT D’EVAPORATION EN MOUVEMENT 

R&urn&-Des solutions exactes sont obtenues pour les distributions de temperature et d’humiditt ainsi 
que pour la position du front d’tvaporation en mouvement dans un demi-espace poreux. 

Deux modeles math6matique.s sent consid&&, correspondant au shchage d’un corps humide dans la 
pCriode de diminution de la vitesse ~~vaporation et au sechage intensif en prCsence du transfer? de masse 
dans la rCgion d’&aporation. I1 est montrC que le probltme rCsolu dans [l] est un cas trt?s special de la 
solution prCsentke ici. L’influence de quelques uns des paramdtres adimensionnels est illustrCe par 

des exemples. 

EXAKTE LOSUNG FOR DIE TEMPERATUR- UND FEUCHTIGKEITSVERT~ILUNG 
IM PORC)SEN HALBRAUM MIT WANDERNDER VERDAMPFUNGSFRONT 

Zussmmenfassung-Fiir einen pordsen Halbraum wurden exakte Liisungen sowohl fiir die Temperatur- 
und Feuchtigkeitsverteilung als such fiir den Verlauf der fortschreitenden Verdampfungsfront ermittelt. 
Dem Trocknen des feuchten Kirrpers in der Periode abnehmender Geschwindigkeit und dem intensiven 
Trocknen durch molekulare ubertragung im Verdampfungsbereich entsprechend wurden zwei mathe- 
matische Modelle betrachtet. 

Es wird gezeigt, daR das in [l] geliiste Problem ein sehr spezieller Fall der hier vorgelegten LGsung 
ist. Der EinfluB einiger der dimensionslosen Parameter wird durch Beispiele erllutert. 

TOYHOE PEBIEHI?E 3AflAYH 0 PACI-IPEAEJIEHHH TEMI’IEPATYPbI M BJIANHOCTM 
B I-IOPLlCTOM I-IOJIYl-IPOCTPAHCTBE C fiBHImYIIJiJMCJI QPOHTOM MCI’IAPEHMII 

ArmoTaqmi - ITonytieHbt TogHbIe pacnpenenewEifl Tehmeparypbr II BnamHocTU, a Taioue nonoxeHwe 
ABHXyLUeTOCR @pOHTFI nCIIapeHliK B lTOpI%CTOM IlOJIyllpOCTpaHCTBe. PaCCMaTpHBaIOTCfl ABe MaTeMa- 

TEi'feCKHe MOWJXW, COOTBeTCTByH)~necyulKeBJIaXHoro Tenanp~yMetiburamuehf~~0p0cTuCymKn 

H nHTeHC~BH0~ CyEIKe C MOAKpHbtM IlepeHOCOM B odnacril nc~a~~n~. nOKa3aH0, YTO 3aAaYa, 

peIueKHane [l], IIpepcTaBnKeT~aCTHbI~CJIy~afi~aHHoro peureeaa. %mimeHeKoTopbIX6e3pa3Mep- 


